

Primary Batteries for Emerging Deep Space Exploration Missions

Keith Billings, Ratnakumar Bugga, Keith Chin, John-Paul Jones, Simon Jones, Frederick Krause, Raymond Ontiveros, Jasmina Pasalic, Marshall Smart, William West and Erik Brandon

Electrochemical Technologies Group

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109 *erik.j.brandon@jpl.nasa.gov

232nd Electrochemical Society Meeting

National Harbor, MD Tuesday, October 3, 2017

Outline

Motivation for work

Screening for performance vs. temperature

Calorimetry/heat evolution during discharge

Radiation testing

Increasing Interest in Ocean Worlds

Europa

Primary Batteries for Potential Future Landers

High specific energy

- Extreme distance from Sun and lander mass considerations suggest mission concepts powered only by a primary battery
- 10-20 <u>day</u> mission timeline requires high specific energy to keep battery mass low

Wide temperature operation

Low temperature applications

Moderate to high temperature applications

Radiation tolerance

Planetary protection protocol

High radiation operational environment

Evaluation of Cell Options

Cell Chemistry	Vendor	Part Number	Format
Li/SO ₂	Saft	LO 26 SXC	D cell
Li/SOCI ₂	Saft	LSH 20	D cell
Li/FeS ₂	Energizer	L91	AA cell
Li/MnO ₂	Ultralife	CR15270	D cell
Li/CF _x -MnO ₂	Eagle- Picher	LCF-133 (COTS and modified)	D cell
Li/CF _x	Ray-O-Vac	DP-BR-20Al	D cell

Initially targeted high specific energy at moderate rates (50-600 mA for a D cell) and temperatures of -40 to +30°C

Moderate Rate Discharge ~C/300 between -40°C and 0°C

- At lowest temperatures, Li/FeS₂ delivers the highest specific energy
- At ~-30°C there is a cross-over, and Li/CF_x-MnO₂ is highest

Moderate Rate Discharge ~C/60 between -40°C and 0°C

- Similar situation at higher rates
- Li/CF_x-MnO₂ significantly higher performance at 0°C

Evolving System and Power Requirements

- As system trade studies evolved, nominal operating temperature increased, along with mission timeline (need more energy)
- Low temperature, moderate duration (original design)
 - Temperature: -40°C, Mission timeline: 5-10 days
- Moderate temperature, long duration (updated design)
 - Temperature: >0°C, Mission timeline: 10-20 days
- Hybrid Li/CF_x-MnO₂ was clear choice
 - Start evaluating heat output/thermal considerations

Li/CF_x-MnO₂ Discharge Testing

Environmental Chamber

Slight temperature rise observed via attached thermocouples, during discharge in large convectively cooled chamber

Calorimetry of Li/CF_x-MnO₂

Calorimetry of Li/CF_x-MnO₂

Radiation Test Set-Up

- Plexiglass container
- Continuous nitrogen purge
- Mounted on motorized track for remote removal from source

Radiation Test Fixture

Radiation test fixture for two D-cells

Monitoring During Radiation Dose

Bernie Rax (Radiation Test Engineer)

- Open circuit voltage and temperature measured during dose
- If temperature or OCV exceeds limits, cells are pulled from the source

Eagle-Picher Li/CF_x-MnO₂ cells: radiation exposure Effects of Irradiation on OCV and Impedance

- Rise in OCV proportional to irradiation
- Irradiation also causes cell heating; however, manually heating a non-irradiated cell in a stepwise fashion reveals that increased temperature causes lower OCV:

- Temperature is not the cause of OCV rise
 - No change in impedance after radiation

Oct. 3, 2017

From: F. Krause, et al. "Evaluation of Commercial High Energy Lithium Primary Cells for Wide Temperature Range Aerospace Applications," 231st Meeting of the Electrochemical Society, New Orleans, Louisiana, May 31, 2017

Eagle-Picher Li/CF_x-MnO₂ cells: radiation exposure No irradiation → 10 Mrad exposure

- 10 cells were irradiated to either 1, 2, 4, 8, or 10 Mrad
- Discharge at 21 °C, 250 mA, along with two non-irradiated cells
- Very similar discharge performance
- Discharge profiles show no significant changes up to 10 Mrad exposure

Effects of Radiation on Li/CF_x-MnO₂ Cells

 Previously reported data indicated shift in OCV with total dose (Krause, Spring ECS 2017)

No significant impact on beginning-of-life capacity delivered

Now looking at pure CFx

Li/CF_x discharge at +21°C and 50 mA

Li/CF_x discharge at 0°C and 50 mA

Very similar performance at moderate temperature for two different cell designs

Evolution of OCV following 10 MRad irradiation of Li/CF_x-MnO₂

Evolution of OCV following 10 MRad irradiation of Li/CF_x

Oct. 3, 2017

OCV increases during irradiation, then rapidly immediately after, followed by a slower second increase, prior to taper

Summary

- Different primary battery chemistries can be adapted to different performance requirements
 - Li/FeS₂ provides excellent performance at low temperature
 - Li/CF_x-MnO₂ is better at moderate to high temperatures
- Significant heat generation from CF_x must be considered in final battery design
- Starting to address unusual radiation response
 - Electrochemical impedance spectroscopy of pristine, irradidated and partially discharged cells
 - Planned destructive physical analysis of cells, to analyze irradiated cell components

Acknowledgements

The authors would like to thank Mario DeStephen and Eivind Listerud of Eagle-Picher for providing the calorimetry data

This research was carried out at the Jet Propulsion
Laboratory (JPL), California Institute of Technology under a
contract with the National Aeronautics and Space
Administration